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LETTER TO THE EDITOR 

The dimension of affine-invariant fractals 

K J Falconer and D T Marsh 
School of Mathematics, University of Bristol, University Walk, Bristol BS8 ITW, U K  

Received 24 September 1987 

Abstract. A generic formula for the Hausdorff and box counting dimensions of self-affine 
fractals is presented. Extensions to the non-linear situation and to repellers in discrete 
dynamical systems are discussed. 

A wide variety of natural, physical and mathematical objects may be conveniently 
regarded as fractals. Some of these have a self-similar structure, in the sense that 
locally they appear to be a scaled-down copy of the whole object. These include the 
von Koch 'snowflake' curve and Julia sets in dynamical systems. Other fractals are 
self-similar in a statistical sense: the spatial probability distribution of the object locally 
is the same as that of the whole object, but scaled by an appropriate factor. This class 
includes Brownian motion, percolation models, the Ising model of magnetism and 
some models of turbulence (Mandelbrot 1982). 

Many fractals, however, are better regarded as self-affine, either strictly or in a 
statistical sense. In this case locally the fractals are images of the whole object under 
certain distorting or non-isotropic transformations. Examples include mountain sky- 
lines, flames, ferns, fractal viscous fingering and the diff usion-limited aggregation model 
(see Stanley and Ostrowsky 1986). Strictly self-affine fractals have been used in image 
reconstruction (Barnsley et a1 1987) and fractal interpolation (Barnsley 1986). 

It is of interest to calculate or estimate the basic parameters of a fractal, such as 
the Hausdofi dimension. Here we give a mathematical treatment of the strictly 
self-affine case, i.e. for fractals that are invariant under a collection of contracting 
affine transformations. 

Suppose that the transformations S I ,  . . . , Sk on R" are contractions, i.e. there exist 
constants ci with O <  ci < 1 such that ISi (x)  - S,(y) l  s cilx -yJ  for all x,  y E R". By a well 
known result (see Hutchinson 1981, Barnsley and Denko 1985), there is a unique 
non-empty compact set F which is invariant for the Si, i.e. such that 

k 

F =  U S , ( F ) .  
i = l  

For instance, the familiar 'middle-third' Cantor set is invariant for the contractions 
S l ( x )  = x/3 and S , ( x )  = (x+2)/3. 

Let J ,  denote the collection of all r-digit sequences formed using the integers 
1,. . . , k ;  let J = U r = l  J ,  be the set of all such finite sequences and let J ,  be the 
corresponding set of infinite sequences. For each i = ( i , ,  . . . , i f )  E J r ,  we write Si for 
the composition of the contractions S,, 0 S,, 0 . . . 0 S,,. 

3i 
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If E is any non-empty, bounded set such that S i ( E ) c  E for 1 s  i s  k, then the 
invariant set is given by 

Thus, taking SI and S2 as before, and E as the unit interval, this intersection gives the 
'usual' construction of the middle-third Cantor set. Alternatively, the single points 

1- 

xi  = n (si, o .  . S J E )  

F =  U x i .  

r =  1 

where i = ( i ,  , i 2 ,  . . . ), are defined independently of E, and 

i s )=  

(3) 

(4) 

Typically, the invariant sets F are fractals and it is of interest to calculate the 
dimension of F (see Mandelbrot 1982, Falconer 1985). If the Si are similarities (i.e. 
lS,(x) - S i ( y ) /  = cilx -yl for 1 s i s  k )  then the Hausdorff dimension, dim,, and box 
counting dimension, dim,,, are often both equal to the unique value of s satisfying 

k 1 c;=1 
, = I  

In  particular this is true if the components S , ( F )  in ( 1 )  are 'essentially disjoint' (see 
Hutchinson 1981, Moran 1946). Thus the Cantor set has dimension log2/log3 
(c ,  = c2 = f )  and the dimensions of the von Koch curve and Menger sponge may be 
obtained similarly. Equation ( 5 )  also gives the dimension in 'almost all' cases where 
the S , ( F )  overlap (Falconer 1987). 

In this letter we discuss the situation where the S, are affinities. An aj in i fy ,  or 
@ne transformation, is a composition of a linear mapping (always contracting in our 
case) and a translation. Thus S,(x) = T , ( x )  + a, where a, E R" and T, is a non-singular 
linear mapping on R". It is convenient to regard the TI as fixed and let F ( a )  denote 
the invariant set for the mappings S, = T, +- a,, where a = ( a , ,  . . . , a k ) ,  so that 

Bedford (1984) and McMullen (1984) have calculated dim F ( a )  in some special cases 
with T ,  = . . . = Tk and differing a , .  Unfortunately, their results depend on the a, in a 
rather unstable way. Some general aspects of self-affine fractals are discussed in 
Mandelbrot (1985, 1986). Here we present a formula which gives dim F ( a )  for almost 
all a E R n k ,  in the sense that the exceptional parameters have zero nk-dimensional 
volume. 

The singular values cyI  3 a2 2. . .a a,  of a linear mapping T may be thought of in 
two ways: they are the lengths of the principal semi-axes of the ellipsoid T ( B )  where 
B is the unit ball in R", or they are the positive square roots of the eigenvalues of T* T 
(with T" the adjoint of T ) .  For 0s s S n define the singular value function 

( 7 )  dY( T )  = & , a * .  . . . cy,-,as,-m+l 

where m is the integer such that m - 1 < s G m. I f  T is contracting and non-singular, 
then 4 ' ( T )  is continuous and strictly decreasing in s, and for fixed s is easily seen to 
be submultiplicative, i.e. 4' (  T U )  c 4' (  T ) + ' (  U ) .  With T, as above, and writing & = 
T,, 0 . . . 0 Tlr, it follows that the rth level sums I; = XiE,, 4'  ( T i )  are also submultiplicative 
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( Z ; + q  s ZZZg), so that ( X : ) " r  converges, for each s, to a value that is strictly decreasing 
in s. Assume that limr+m(Xy)"r G 1. Then there is a unique positive s, which we denote 
by d (  T I , .  . . , Tk), such that 

Equivalently, using the asymptotic behaviour as r+im of Z:, 

d (  T , ,  . . . , T k )  = inf s: 2 c$'( T )  is convergent . (9) { i c J  1 
Our principal claim is that, for almost all a E Itnk, 

dim,,(F(a)) = dimb(F(a) )  = d (  T I , .  . . , Tk) (10) 

where F ( a )  is given by (6). 
We outline the derivation of (10); full technical details may be found in Falconer 

(1988). A straightforward covering argument shows that dimh F ( a )  S d (  T I , .  . . , T A )  
for all a :  choose a large ball B with SI(  B) = T , ( B )  + a, c B for all i. Then for each r, 
the set F (  a )  is covered by the collection of ellipsoids ui, J ,  Si( B). But Si( B) is contained 
in a rectangular parallelepiped of sides 21Blal, . . . ,21Bla, where a , ,  . . . , a,  are the 
singular values of Ti .  If m is the least integer greater than or equal to s, we may divide 
such a parallelepiped into at most 

1 ~ m (41BI)"-m+1(41BI~l/a,)(41BJa,l~,). . . ( 4 I B I a m - , / a m )  S (4IBI")al . . .  a m - l a m  

(11) 

cubes of side a,,,, and these coverings give the upper estimates for d imhF(a) .  A 
modification of this argument, selecting cubes of 'roughly the same size', shows that 

The opposite inequality is obtained using the potential-theoretic characterisation of 
Hausdorff dimension (see Falconer 1985): if F supports a mass distribution v with 
0 < v( F )  < o;, such that 

dimb F (  a )  s d ( TI , . . . , Tk ). 

(x-Y(--" dv(x)  d v ( y ) < a  (12) IS 
then dim F 3 s. If  s < d (  T I , .  . . , Tk), so that X,€ J ,  4'(  T )  + as r .+ 00, it is possible to 
construct a mass distribution p on J ,  such that p ( B i )  G 4'( T i )  for i = ( i , .  . . . , i ,) E J, 
where Bi is the 'cylinder' { ( i l , .  . . , i , , j , + , , j r + * , .  . . ) :  l G j r + l , j r + 2 , .  . .< k }  in J , .  With 
xi as in (3), but now dependent on the parameter a, the mapping i-xi transfers p to 
a mass distribution on F ( a )  for each such a. A certain amount of calculation, valid 
at least on the assumption that 11 T, 11 < for 1 s i s k, gives 

where ( ) denotes the average as a ranges over a region in parameter space. The crucial 
factor here is that, if i # j, then the vectors xi -xi are distributed in a non-singular 
manner as a varies. Hence for almost all a E Itnk the mass distribution p transferred 
to F ( a )  has finite energy, so that dim,, 3 s. 

There are two situations where dim,, F ( a )  < d (  T I , .  . . , Tk) (though, by the above, 
they only occur for exceptional values of a ) .  First, if the components S i ( F )  making 
up F in (1) overlap substantially, a reduction in dimension may occur. Second, even 
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if the components Si( F )  with i E J ,  are disjoint for each r, they can align in such a 
way that unusually efficient coverings are possible in the definitions of dimension. 
(This second case cannot occur if the S, are similarities, whence d (  Ti ,  . . . , Tk) is given 
by ( 5 ) . )  A consequence of the second situation is that dim,, F ( a )  need not vary 
continuously with a even if no overlapping occurs. 

In figure 1, we illustrate the invariant set for triples of mappings S, = T, + a, 
( i =  1 , 2 , 3 )  with the same T, in each case, but with different values of a,. The value 
d (  T i ,  T 2 ,  T3) ,  which gives the dimension in all three cases (assuming that we have not 
been extremely unlucky in the choice of the a,) was computed as being 1.43i0.01 
using (8). 

It is natural to extend the generic formulae for dimension to the situation where 
the S, are non-linear contractions. The special case where the S,  are conformal 
(angle-preserving), generalising the self-similar rather than the self-affine case, was 
analysed by Ruelle (1982, 1983). 

Assume that the S, are of differentiability class C2 on a region E cR", with 
IIDS,(x)ll s c, < 1 for x E E, where the linear mapping DS,(x) is the derivative of S, 

Figure 1. Computer drawings of the invariant sets 
with S, = T, + a, ( 1  L is  3)  defined in the obvious 
way as the affine transformation that maps the 
perimeter square onto each of the three rectangles 
shown. 
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evaluated at x. The counterparts of (8) and (9) are 

d ( S l ,  . . . ,  S k ) = { s :  !ip( i c  c I ,  q5s(DSi(x)))”r=I} 

where Si = S,,  0 . . . 0 SI,. Here, x is chosen to be any point of E ;  because of the contractive 
properties of the derivative, the particular point chosen does not affect the convergence 
rates that define d ( S l ,  . . . , SA). As in the linear case, (14) and (15) will not always 
give the Hausdorff dimension of the invariant set F associated with the S , ,  although 
always providing an upper bound. However, if the SI are dependent on a sufficiently 
general set of parameters (so that for each pair i, j E J ,  the points xi -xi are distributed 
in a non-singular manner as the parameters are varied) then we would expect that 
dimh F = dimb F = d(S l ,  . . . , S , )  at almost all points in the parameter space. 

We may extend this further to obtain a generic formula for the dimension of 
repellers of certain discrete dynamical systems. Suppose thatf: R“ + R” is a Cz mapping 
such that there are open regions E and E , ,  . . . , Ek such that the restriction o f f  to 
each E,  is a strictly expansive bijection onto E (for example, in figure l ( c ) ,  think of 
a function which maps each rectangle onto the square). This situation arises naturally 
as a Markov partition for an expansive function (see Ruelle 1983). Taking the restriction 
of f-’ to E, as the contraction S,, we see that the invariant set for the SI is a repeller 
F for J: Moreover, in terms of (14) and (15), we may replace x by the fixed points of 
S,,, corresponding in a unique way to a fixed point of the rth iterate f‘”; again the 
critical value of s is unaffected because of the geometric convergence rates. Hence 
under these circumstances, (15 )  becomes 

This number is always at least dimh F and may be expected to give the actual value 
in the general situation. 

DTM thanks the SERC for financial support. 
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